Vowel assimilation to onset place in Kejom

Matthew Faytak^{1,2} Pius Wuchu Akumbu^{3,4}

¹University of California, Los Angeles ²University of California, Berkeley

> ³University of Buea ⁴University of Hamburg

> > ACAL 50, UBC

Follow along!

Audio will be played where marked with \triangleright .

Scan this QR code to download a copy of the slides:

Kejom [kèd͡ʒóm]

- More commonly known as Babanki, ISO 693-3 [bbk]
- Roughly 40,000 speakers in two settlements in Cameroon Grassfields¹

¹ Hyman, 1980; Simons and Fennig, 2017; Hammarström, Bank, Forkel, and Haspelmath, 2017.

The present study

Phonetic details of the Kejom vowels² (previously unstudied)

- Kejom Ketinguh variant described here, as spoken by the second author
- Single-speaker study, but author is typical of the larger population
- Acoustic and articulatory records (video and ultrasound)

Evidence for an unusual pattern of **assimilation to onset consonants** for vowels /i/ and /u/

- Both /i/ and /u/ pick up constriction of postalveolar onsets
- /ʉ/ also picks up constriction of labiodental and bilabial onsets

Outline

The phonemic inventory

- Consonants
- Vowels

Acoustic characterization of the vowels

Guides expectations for articulatory study

Articulatory phonetic study

- Postalveolar allophones of /i/ and /u/
- Labial allophones of /u/

Discussion

Inventory

Consonant inventory

After Akumbu and Chibaka, 2012

	Bilab.	Labden.	Alv.	Postalv.	Palatal	Velar
Plosive	b		t d			k g
Affricate		pf bv	ts dz	t͡ʃ d͡ʒ		
Nasal	m		n		ŋ	ŋ
Fricative		fv	S Z	J3		
Approx.	W		I		j	щ

• Later, focus will be put on labials, postalveolars

Vowel inventory

Multiple non-peripheral vowel phonemes; common in Grassfields³

- Low-mid [ε], [ɔ] are marginal (allophones of /e/, /o/; vowel coalescence)
- [u] is often a bit fronter, nearly [y]

³Rolle, Lionnet, and Faytak, in press.

Vowel examples

More will be said about other allophones of /i/, /u/ shortly

	Example	Gloss	
/i/	ìdé	'kola nut'	▶ 1.
/u/	bú	'more, extra'	> 2.
/e/	àbé	'liver'	
/o/	bó	'weave'	
/a/	bá	'dad'	
/ i /	ǵŧ¹sé	'voices'	⊳ 3.
/ u /	g ú ¹sé	'skins'	▶ 4.
\e\ _	gé¹sé	'bundles'	⊳ 5.

Speaker's vowels on F1-F2 plane

Mean F1, F2 with 95% confidence ellipses

Speaker's vowels on F3-F2 plane

No unexpected differences in F3

Assimilation of /i/, /u/ to onset

- After postalveolars: [u] and [i], **postalveolar** constriction made with tongue blade
 - ▶ IPA diacritic _ means "laminal"
- After bilabials: [ʉ^ß], **lip-compressed**
- After labiodentals: [u^V]; labiodental constriction

Onset type			Example		
/i/	postalveolar	[į]	[kè ⁿ d͡ʒi̯] 'fool'		
/ u /	postalveolar	[u]	[t͡ʃʉ̞́] 'spit'	> 2.	
/ u /	labiodental	[u ^v]	[pf͡uဴ ^v] 'die'	⊳ 3.	
/ u /	bilabial	[u ß]	[b ú^ß] ~ [b́́န] 'dog'	▶ 4.	

Speaker's allophones on F1-F2 plane

 $[\frac{1}{4}]$ has **higher F2** compared to $[\frac{1}{4}]$, otherwise allophones are similar to "elsewhere" counterparts

Speaker's allophones on F3-F2 plane

[뉴] has **lower F3** compared to [ʉ], otherwise allophones are similar to "elsewhere" counterparts

Noise: postalveolar allophones

Postalveolar fricative noise extends from onset straight through [i̪], [u̪], suggesting carryover of constriction location from onset

[3i] 'be slow' $\triangleright 1$.

[3i] 'eat' \triangleright 2.

Noise: labial allophones

 $[\underline{\mathbf{u}}^{\mathsf{V}}]$ shows similar continuation of frication from labiodental onsets; lip-compressed $[\underline{\mathbf{u}}^{\mathsf{B}}]$ is frequently trilled

$$[\widehat{pfu}^{v}]$$
 'die' \triangleright 1.

[**b**β] 'dog' ⊳ 2.

Interim summary

These allophones could be construed as the result of processes of **assimilation** of some vowels to some onsets

- Assimilation to postalveolar onsets in terms of tongue position
- Assimilation to bilabial, labiodental onsets in terms of lip position (only of [+round] vowel)

Articulatory study

Are /i/ and /u/ really produced with constriction locations used by an articulator active in some onset consonants?

Materials

Recordings were taken of the second author

- Ultrasound recordings and video of lips collected in separate sessions
- Collected in Berkeley PhonLab, 2016
- Words containing target vowels [i̪], [ʉ], [ʉ^ß] [ʉ^v]
- Also words containing comparison vowels [i], [u], [u]

Ultrasound tongue imaging

- Provides information on tongue shape and position
- Ultrasound probe is stabilized with respect to the lower jaw using a headset⁴

⁴Scobbie, Wrench, and van der Linden, 2008.

Video recording

- View of face to capture labial articulation
- Collected in separate session from ultrasound
- Frontal recording; mirror held at 45° angle to capture side view of lips

Example ultrasound data

Palate is not normally visible at same time as tongue, but has been added in for reference

Analysis

Ultrasound data is noisy; undergoes further processing

- Tongue surface contours extracted using EdgeTrak⁵
- Contours submitted to smoothing-spline ANOVA⁶, calculated using polar coordinates⁷
- Resulting models are of typical tongue surface position for each segment type
- If confidence intervals do not overlap, the models differ at that point along the curve

⁵Li, Kambhamettu, and Stone, 2005.

⁶Davidson, 2006.

⁷Mielke, 2015.

Results

Labial articulation of [u^v], [u^ß]

Lip posture of both allophones is quite distinct from [u]

[u]: [bú] 'more, extra'

[u^ß]: [bú^ß] 'dog'

[ʉ^v]: [ⁿbv́ú^v] 'chicken' ⊳

Labial articulation of [u^v], [u^ß]

Also distinct from [u]; [u^{i}] subtly protruded compared to [u] [u]: [$g\dot{u}$] 'skin' \triangleright

[u^ß]: [bú^ß] 'dog'

 $[\underline{u}^{v}]$: $[^{n}\widehat{bv}\underline{\dot{u}}^{v}]$ 'chicken'

Lingual articulation of [u^V], [u^ß]

- Tongue position of $[\mathbf{u}^{\mathbf{v}}]$, $[\mathbf{u}^{\mathbf{g}}]$ (yellow, green) is surprisingly **low** and **front**
- Compare [a] (purple)
- Very distant from any high vowel, even [u]
- n.b. palate trace is provided in black

Lingual articulation of [i]

- Shape of [i] is overall nearly identical to [ʃ]
- Lowered tongue dorsum relative to [i]
- Blade somewhat raised, suggesting support of raised tip

Lingual articulation of [ᇦ]

- Shape of [] is overall nearly identical to []
- Lowered tongue dorsum relative to [u]
- Blade very much raised in support of [ʃ]-like constriction

Conclusion:

Yes: Kejom /i/, /u/ do take on the major constriction location of certain onsets

Discussion

Summary: phonetics

Phonetically interesting: assimilation results in unusual vowel-like sounds

- Constriction types not typically associated with vowels (postalveolar, labiodental, etc.)
- Some occlusion of vocal tract is usually apparent: light noise, trilling, etc.
- At odds with description of vowels as having unimpeded airflow⁸
- If not vowels, then they are also not quite voiced fricatives (too many formants!)

Summary: phonology

Interesting classes of undergoers and triggers, even if treated as two distinct processes

- Only some high vowels affected
- Why no assimilation to velars like /k/, or alveolars like /s/?
- Why only assimilation to the obstruent continuants (no plosives except /b/)?

Typological parallels

Pattern of assimilation to onset resembles that of **"fricative vowels"** in languages of the **Sinosphere** (China and surrounds)⁹

- Coronal types, AKA "apical vowels": /i/ takes on the constriction location of a sibilant fricative or affricate preceding it, similar to Kejom [ij]¹⁰
- Labial types: /u/ takes on the constriction location of a bilabial or labiodental obstruent preceding it, similar to Kejom [u^V] and [u^R]
- Labial segments also have lowered tongue body, as in Kejom¹¹

Asymmetries in perception and resistance to coarticulation likely explain these recurring patterns

⁹Dell, 1994; Zhu, 2004.

¹⁰Lee-Kim, 2014; Matthew Faytak and Lin, 2015.

¹¹Matthew Faytak, Kuo, and Wang, 2019.

Closer to home

More of these vowels can be found in Grassfields Bantu: very often reflexes of a reconstructible ${}^*\mathbf{u}$

- [i̪] and [ʉ^v] occur in Oku, closely related
 - Allophones of a single phoneme /ə/, which is a reflex of *u¹²
- [\mathbf{u}^{β}] occurs in Med \mathbf{u} mba, further afield 13
- Kom, also closely related¹⁴
- Further afield: Limbum¹⁵, Len Mambila¹⁶

¹²Davis, 1992.

¹³Olson and Meynadier, 2015.

¹⁴Matthew Faytak, 2017.

¹⁵Matthew Faytak, 2017.

¹⁶Connell, 2007.

Concluding notes

Vowels of the sort investigated here are probably undercounted

- Auditory impression is often of a central vowel such as [i] or [ə]
- More careful phonetic record-keeping may spare us further descriptive inaccuracies
- Include simple articulatory methods in the fieldworker's arsenal
 - Photography or videography
 - Static palatography, if possible given phonotactics

Concluding notes

Also cautions against painting linguistic areas with too broad a brush

- Kejom's part of the Grassfields is not very prototypically West African phonologically
- In fact, greater typological similarity to the Sinosphere in some senses

Thanks

For questions or comments, please contact faytak@ucla.edu

Scan this QR code to download a copy of the slides:

References I

- Akumbu, P. W. & Chibaka, E. F. (2012). A pedagogic grammar of Babanki: a Grassfields language of Northwest Cameroon. Rüdiger Köppe Verlag.
- Catford, J. C. (1977). Fundamental Problems in Phonetics. Midland Books.
- Connell, B. (2007). Mambila fricative vowels and Bantu spirantization. Africana Linguistica, 13, 7-31.
- Davidson, L. (2006). Comparing tongue shapes from ultrasound imaging using smoothing spline analysis of variance. *The Journal of the Acoustical Society of America*, 120(1), 407–415.
- Davis, L. K. (1992). A Segmental Phonology of Oku. (Master's thesis, University of Texas at Arlington).
- Dell, F. (1994). Consonnes à prolongement syllabique en Chine. Cahiers de linguistique—Asie orientale, 23(1).
- Faytak, M. [M.] & Akumbu, P. (in press). Kejom (Babanki). JIPA.
- Faytak, M. [Matthew]. (2017). Sonority in some languages of the Cameroon Grassfields. In M. J. Ball & N. Müller (Eds.), Challenging Sonority. Equinox.
- Faytak, M. [Matthew], Kuo, J., & Wang, S. (2019). Lingual articulation of the Suzhou Chinese labial fricative vowels. In Proceedings of ICPhS 19.
- Faytak, M. [Matthew] & Lin, S. (2015). Articulatory variability and fricative noise in Standard Mandarin apical vowels. In Proceedings of ICPhS 18.
- Hammarström, H., Bank, S., Forkel, R., & Haspelmath, M. (2017). Glottolog 3.1. http://glottolog.org/, accessed 2018-01-18. Max Planck Institute for the Science of Human History.

References II

- Hyman, L. M. (1980). Babanki and the Ring group. In L. Bouquiaux, L. M. Hyman, & J. Voorhoeve (Eds.), Les classes nominales dans le bantou des Grassfields: L'expansion bantoue. Actes du Colloque International du CNRS, Viviers (France), 4-16 avril 1977 (Vol. 1, pp. 225–258). SELAF.
- Lee-Kim, S. (2014). Revisiting Mandarin 'apical vowels': An articulatory and acoustic study. *Journal of the International Phonetic Association*, 44(3), 261–282.
- Li, M., Kambhamettu, C., & Stone, M. (2005). Automatic contour tracking in ultrasound images. Clinical Linguistics & Phonetics. 19(6-7), 545–554.
- Mielke, J. (2015). An ultrasound study of Canadian French rhotic vowels with polar smoothing spline comparisons. *The Journal of the Acoustical Society of America*, 137(5), 2858–2869.
- Olson, K. S. & Meynadier, Y. (2015). On Medumba bilabial trills and vowels. In Proceedings of ICPhS 18.
- Rolle, N., Lionnet, F., & Faytak, M. (in press). Areal patterns in the vowel systems of the Macro-Sudan Belt. *Linguistic Typology*.
- Scobbie, J. M., Wrench, A. A., & van der Linden, M. (2008). Head-probe stabilisation in ultrasound tongue imaging using a headset to permit natural head movement. In *Proceedings of the 8th international seminar on speech production* (pp. 373–376).
- Simons, G. F. & Fennig, C. D. (2017). Ethnologue: languages of the world. http://ethnologue.com, accessed 2018-01-18. SIL international.
- Zhu, X. (2004). Hànyǔ yuānyīn de gāodǐng chūwèi [Sound changes of high vowels in Chinese dialects]. Zhongguo Yuwen, (5), 440–51.

Ultrasound specs

Hardware

- Ultrasonix SonixTablet equipped with C5/9–10 microconvex probe
- Probe stabilized with Articulate Instruments headset¹⁷

Software

- Raw scanline data converted to real-world proportions using Python utilities
- All image modifications turned off (data is unfiltered)
- No other imaging parameters changed
- Frame rate of approximately 57 Hz

¹⁷Scobbie et al., 2008.