Articulation and perception of Mandarin coda nasals by Shanghainese-Mandarin bilinguals

Suyuan Liu and Matthew Faytak liusuyuan@ucla.edu; faytak@ucla.edu

LSA 94th Annual Meeting Jan. 3, 2020

Overview

Mandarin nasal codas /n/ and /ŋ/ are prone to merger after non-low vowels

- » Previous literature is overly focused on language contact as cause and is generally based on auditory impression
- Present study: another look at articulation and perception of **Mandarin nasal codas** by two groups, **Shanghai Mandarin** speakers and control northern Mandarin speakers
 - » Speakers vary between [n] and [ŋ] for some lexemes
 - » After /i/, merger to place which is neither [n] nor [ŋ]
 - » Poor discrimination performance; perceptual bias towards [ŋ]

Outline

Background

Ultrasound Study: characterize **articulatory** properties of merged nasal codas

- » Linear discriminant analysis (LDA) method
- » Visualizing typical nasal coda tongue shapes

Perception Study: **discrimination** of the merged nasal codas after /i/

- » Stimulus selection using LDA
- » AXB task

Discussion

Background

Shanghai Mandarin nasal codas

Regional dialect of Standard Mandarin spoken in Shanghai

- » Not to be confused with Shanghainese (Wu dialect)
- » Speakers usually bilingual: L1 or co-L1 Shanghainese

Merges its two nasal codas /n/, /ŋ/ after non-low vowels¹

- » /an/–/aŋ/ remain distinct
- » /ən/-/əŋ/ and /in/-/iŋ/ merge

This pattern of nasal merger is also seen in other dialects of Standard Mandarin, such as Taiwan Mandarin²

¹Guan, 2019; Luo, 2015.

²Chiu et al., 2019; Wu, Sloos, and van de Weijer, 2016.

At issue here: **non-contrastive place** that nasals settle on in Shanghai Mandarin

- » All described as [n], but using only auditory coding³
- » Perception of coda nasal place after [i], [e] has known bias toward [n]⁴

In Mandarin dialects where place has been investigated using ultrasound, e.g. Taiwan Mandarin⁵; place is known to **vary according to the preceding vowel**

- » After mid vowel /ə/, merge to [n]
- » After high vowel /i/, merge to [ŋ]

³Guan, 2019; Luo, 2015.

⁴Zee, 1981.

⁵Chiu et al., 2019.

Liu and Faytak

Influence of L1 transfer?

Merger *and the merged coda's place* are often attributed to contact with the local language

... regardless of the contact language and its nasal contrasts!

- » Shanghainese (contact with Shanghai Mandarin) lacks nasal coda contrasts⁶
- \ast Southern Min (contact with Taiwan Mandarin) contrasts coda /m, n, $\eta/^7$

We find this account unlikely

- » Involvement of coarticulatory pressures?
- » Perception?

⁶Luo, 2015.

⁷Y. Chen and Guion-Anderson, 2011; Chiu et al., 2019.

Ultrasound study

Study objectives

We find it more likely that **biomechanical factors** dictate place of non-merged nasal

- » Ultrasound study of Shanghai Mandarin to determine:
 - » Place of merged nasal
 - » Which vocalic contexts encourage merger

Recording method

Synchronized **ultrasound video** and **audio** recorded in UCLA Phonetics Lab

» UltraFit stabilization headset used⁸

⁸Spreafico, Pucher, and Matosova, 2018.

Liu and Faytak

Participants

Two groups recruited on the UCLA campus

Shanghai Mandarin speakers (n=15)

- » L1 or co-L1: Shanghainese
- » Expected to exhibit mergers

Mandarin control speakers (n=5)

- » L1: standard northern/Beijing Mandarin
- » Report no experience with Shanghai Mandarin or Shanghainese
- » Not expected to exhibit mergers

Stimuli

Frequency-matched⁹ minimal pairs differing only in final nasal

n coda	ŋ coda

- a- 隐含 inJ.han1 引航 inJ.haŋ1 "imply" "pilot"
- ə- 清真 tɕʰiŋl.tʂənl 清蒸 tɕʰiŋl.tʂəŋl 'Islamic' 'steamed'
- i- 山林 ʂan٦.li<mark>n</mark>1 山陵 ʂan٦.liŋ1 'mountain forest' 'lofty mountains'
- » Presented in random order in a frame sentence
- » Utterance-final position to avoid place assimilation

⁹Cai and Brysbaert, 2010.

Ultrasound image data is rich, but noisy and high-dimensional

- » Each observation is tens of thousands of pixels
- » Each pixel contains numerical data: for an 8-bit grayscale image, brightness between 0 (black) and 255 (white)

Ultrasound image data is rich, but noisy and high-dimensional

- » Each observation is tens of thousands of pixels
- » Each pixel contains numerical data: for an 8-bit grayscale image, brightness between 0 (black) and 255 (white)

Ultrasound image data is rich, but noisy and high-dimensional

- » Each observation is tens of thousands of pixels
- » Each pixel contains numerical data: for an 8-bit grayscale image, brightness between 0 (black) and 255 (white)

Ultrasound image data is rich, but noisy and high-dimensional

- » Each observation is tens of thousands of pixels
- » Each pixel contains numerical data: for an 8-bit grayscale image, brightness between 0 (black) and 255 (white)

Ultrasound image data is rich, but noisy and high-dimensional

- » Each observation is tens of thousands of pixels
- » Each pixel contains numerical data: for an 8-bit grayscale image, brightness between 0 (black) and 255 (white)

Representing principal components

Map of **loadings** on that PC, or roughly **covariation in pixel intensity**¹⁰

¹⁰Hueber et al., 2007; Mielke, Carignan, and Thomas, 2017.

Representing principal components

Map of **loadings** on that PC, or roughly **covariation in pixel intensity**¹⁰

¹⁰Hueber et al., 2007; Mielke et al., 2017.

Liu and Faytak

Mandarin Nasal Codas

Analysis

Midpoint frames from each nasal coda submitted to PCA

- » PCs 1-10 retained (avg. 80% of variance explained)
- » **Separate PCAs** for each speaker: PCA including all speakers might capture non-linguistic variation
 - » Morphological variation (size, palate shape, etc.)
 - » Ultrasound probe placement variation

PCs 1-10 submitted to a **linear discriminant analysis**, which helps interpret the components

- » Learns dimension that maximally separates etymological /n/ and /ŋ/
- » Yields **linear discriminant values** for each nasal coda token and **classification** as /n/ or /ŋ/ based on these values
- » LD values are **normalized** to 0-1 range for all speakers
 - » /n/ always low, /ŋ/ always high

Predictions

Because less consistent contrasts will be **less learnable by**, and **worse separated** on, the LDA:

- » Shanghai group will have worse separability of /n/ and /ŋ/ than the control group
- » Shanghai group will have lower rate of correct classification of /n/ and /ŋ/ than control group
- Expected place of coda nasals, based on Chiu et al:¹¹
 - » Merger to [n] after /ə/ in Shanghai group
 - » Merger to [ŋ] after /i/ in Shanghai group
 - » No mergers after low vowels, and no mergers for control group

¹¹Chiu et al., 2019.

Classification accuracy

LDA performs worse on Shanghai group; particularly for /əŋ/ and /iŋ/ rhymes

LD values, nasals after /ə/

/ən/ and /əŋ/ merge to (roughly) [ən]; /əŋ/ is **bimodal**

LD values, nasals after /i/

/iŋ/ and /in/ merged, in middle of LD; /iŋ/ is also bimodal

Middle of LD (not near 0 or 1): not easily classified as /n/ or $/\eta/$, but not necessarily similar to either prototype

For segments which cluster mid-LD, we can **reconstruct** a **typical frame** for each nasal after each vowel height from the PCA

- » Multiply each PC's loading by its average PC score (i.e. the nasal in /iŋ/)
- » Add together the contributions of each PC

Middle of LD (not near 0 or 1): not easily classified as /n/ or $/\eta/$, but not necessarily similar to either prototype

For segments which cluster mid-LD, we can **reconstruct** a **typical frame** for each nasal after each vowel height from the PCA

- » Multiply each PC's loading by its average PC score (i.e. the nasal in /iŋ/)
- » Add together the contributions of each PC

Middle of LD (not near 0 or 1): not easily classified as /n/ or $/\eta/$, but not necessarily similar to either prototype

For segments which cluster mid-LD, we can **reconstruct** a **typical frame** for each nasal after each vowel height from the PCA

- » Multiply each PC's loading by its average PC score (i.e. the nasal in /iŋ/)
- » Add together the contributions of each PC

Middle of LD (not near 0 or 1): not easily classified as /n/ or $/\eta/$, but not necessarily similar to either prototype

For segments which cluster mid-LD, we can **reconstruct** a **typical frame** for each nasal after each vowel height from the PCA

- » Multiply each PC's loading by its average PC score (i.e. the nasal in /iŋ/)
- » Add together the contributions of each PC

Middle of LD (not near 0 or 1): not easily classified as /n/ or $/\eta/$, but not necessarily similar to either prototype

For segments which cluster mid-LD, we can **reconstruct** a **typical frame** for each nasal after each vowel height from the PCA

- » Multiply each PC's loading by its average PC score (i.e. the nasal in /iŋ/)
- » Add together the contributions of each PC

Middle of LD (not near 0 or 1): not easily classified as /n/ or $/\eta/$, but not necessarily similar to either prototype

For segments which cluster mid-LD, we can **reconstruct** a **typical frame** for each nasal after each vowel height from the PCA

- » Multiply each PC's loading by its average PC score (i.e. the nasal in /iŋ/)
- » Add together the contributions of each PC

Middle of LD (not near 0 or 1): not easily classified as /n/ or $/\eta/$, but not necessarily similar to either prototype

For segments which cluster mid-LD, we can **reconstruct** a **typical frame** for each nasal after each vowel height from the PCA

- » Multiply each PC's loading by its average PC score (i.e. the nasal in /iŋ/)
- » Add together the contributions of each PC

Reconstructions, control speaker

Tongue position for each nasal is consistent regardless of vowel

Liu and Faytak

i-

Mandarin Nasal Codas

ŋ

ŋ

ŋ

Reconstructions, Shanghai Mandarin speaker

Mergers affect codas in red

a-

ə-

i-

Reconstructed IN. speaker 06

Reconstructed ENG, speaker 06

Reconstructed ING, speaker 06

Liu and Faytak

Mandarin Nasal Codas

Discussion

Realization of merged nasal is **dependent on the preceding vowel**, consistent with other descriptions of dialectal Mandarin

- » After /ə/, merger to [n]
- » After /i/, merger to [ŋ] or perhaps [ɲ]

Realization of merged nasals is **less clear-cut** than usually depicted

- » Neutralized segment after /i/ is **neither** [n] nor [ŋ]
- » Some speakers vary between a canonical [ŋ] and a merged variant after non-low vowels, especially for intended /iŋ/ and /əŋ/

Discussion

Taiwan and Shanghai Mandarin have roughly the same merger patterns, but their situations involve different L1s

» Suggests that L1 transfer does *not* determine the place of the merged nasal that results

Biomechanical factors seem to determine the place that the merged, non-contrastive nasal "settles" on¹²

- » After /i/: [ŋ] has maximally similar tongue position to [i]; requires least muscular strain
- » After /ə/: producing [n] is not biomechanically easier than producing [ŋ], so other factors may be involved
- » Misperception?

¹²Chiu et al., 2019.

Perception study

Perceptual factors

Mergers in production are typically preceded by mergers in perception

- » articulatory merger only if perceptually inconspicuous¹³ Open question: whether Shanghai Mandarin listeners can tell the coda nasals apart
 - » Difficulty reported for Standard Mandarin listeners perceiving /in/-/iŋ/ contrast¹⁴
 - » Perception of nasal codas is also influenced by preceding vowels in language-specific fashion¹⁵

Liu and Faytak

¹³Kawahara and Garvey, 2014.

¹⁴M. Y. Chen, 2000; Mou, 2006.

¹⁵Y. Chen and Guion-Anderson, 2011; Zee, 1981.

Study objectives

Can Mandarin-speaking listeners distinguish the coda nasals in perception?

- » Shanghai Mandarin listeners expected to have difficulty distinguishing between [in], [iŋ]
- » Control Mandarin listeners should not

If discrimination is poor, does bias towards [n] in perception drive it?¹⁶

¹⁶Zee, 1981.

Participants

Two groups recruited on the UCLA campus, defined as in ultrasound study (new speakers)

Shanghai Mandarin (SH) listeners (n=14)

» expected to perform worse in discriminating nasals

Mandarin control (MM) listeners (n=14)

- » expected to perform better in discriminating nasals
- » Not including one Mandarin speaker in our analysis because they had phonetic training

Method and stimuli

AXB discrimination task in sound-treated room at UCLA

- » Non-orthographic presentation of choices ("Choice 1/2")
- » No feedback was provided
- » Total of 304 test trials and 10 practice trials

Tokens of [in] or [iŋ] drawn from ultrasound study data

A and B anchor tokens, produced by control speakers:

- » Canonical [in] (LD < 0.4) from MM
- » Canonical [iŋ] (LD > 0.6) from MM

Method and stimuli

X tokens, [in] and [iŋ] produced by both groups:

- » Canonical [in] or [iŋ] (LD < 0.4 or > 0.6) produced by one MM speaker and four SH speakers
- » Non-canonical [iŋ] (LD 0.4–0.6) from the same SH speakers

Within-talker design is due to a quirk of the production data

» Many speakers **split** productions of /iŋ/ between canonical [iŋ] and non-canonical [iŋ]

d-prime

Poor discrimination performance for all listener groups

- » MM group outperforms SH group at distinguishing coda nasals produced by MM speakers
- » All groups worse at distinguishing SH coda nasals, even canonical ones

Raw response data

Both groups perform badly at the discrimination task

- » SH listeners select more or less randomly
- » MM listeners have a slight bias towards /ŋ/ except for control /n/

Mixed-effect logistic regression

To model the impact of listener group and stimulus type

- » Listener group
 - » Control Mandarin or Shanghai Mandarin
- » Stimulus type, five levels which incorporate:
 - » Control Mandarin or Shanghai Mandarin speaker
 - » Canonical or non-canonical /n/ or /ŋ/
 - » Mandarin control /n/ as baseline
- Used maximal effects structure which converged
 - » resp ~ stim type*listener group + (1 | word) + (1 | talker) + (1 | listener)

Fixed effects

- » Effect of stimulus type is significant
- » Main effect of listener group is not significant, but interactions between listener group and stimulus type are significant

Liu and Faytak

Mandarin Nasal Codas

Conclusion

Ultrasound findings

Data from the ultrasound study shows that

- » Control Mandarin speakers produce nasal coda contrast
- » Shanghai Mandarin speakers merge nasal codas after non-high vowels
 - » To [ŋ] after /i/; to [n] after /ə/
 - » But speakers occasionally produce canonical [n] and [ŋ]

Evidence against L1 transfer conditioning the place of the non-contrastive nasal

» Shanghai Mandarin shows the same pattern as Taiwan Mandarin despite different contact languages

Tying in perception findings

The coda nasals are apparently indistinguishable after /i/ for control and Shanghai Mandarin speakers

- » Both SH and MM listeners poorly distinguish nasal coda place
- » MM listeners exhibit velar bias, which is unexpected
- » Still to test: nasal place contrast after /ə/

Possible **near merger**¹⁷ for MM speakers, who have no difficulty producing an /in/–/iŋ/ contrast but cannot perceive it

» Merger in production is "perceptually inconspicuous"

¹⁷Yu, 2011.

Nasal coda merger as sound change

Findings allow for a more **nuanced** understanding of nasal coda merger in Chinese as a multi-step sound change

Some role for **L1 transfer** cannot be ruled out in the initial loss of the contrast

But following this, articulatory ease and perception may condition the resulting non-contrastive place in some contexts

» Such as merger after /i/

While perception may play a greater role in other contexts

» Such as merger after mid vowels such as /ə/ (to be tested)

- » Megha Sundara; Henry Tehrani for technical help
- » Canaan Breiss for model convergence tips
- » UCLA Dept. of Linguistics for experiment funds provided to first author

References I

- Cai, Q., & Brysbaert, M. (2010). SUBTLEX-CH: Chinese word and character frequencies based on film subtitles. *PloS One*, 5(6), e10729.
- Chen, M. Y. (2000). Acoustic analysis of simple vowels preceding a nasal in standard chinese. *Journal of Phonetics*, 28(1), 43–67.
- Chen, Y., & Guion-Anderson, S. (2011). Perceptual Confusability of Word-final Nasals in Southern Min and Mandarin: Implications for Coda Nasal Mergers in Chinese. In *Proceedings of icphs 17* (pp. 464–467).
- Chiu, C., Lu, Y.-A., Weng, Y., Jin, S.-J., Weng, W.-C., & Yang, T.-H. (2019). Uncovering syllable-final nasal merging in Taiwan Mandarin: An ultrasonographic investigation of tongue postures and degrees of nasalization. In *Proceedings of ICPhS* 19.
- Guan, Y. (2019). Nasal coda realization in speech production of shanghai mandarin. In Proceedings of ICPhS 19.
- Hueber, T., Aversano, G., Cholle, G., Denby, B., Dreyfus, G., Oussar, Y., ... Stone, M. (2007). Eigentongue feature extraction for an ultrasound-based silent speech interface. In *Icassp* 2007 (Vol. 1, pp. I–1245). IEEE.

Kawahara, S., & Garvey, K. (2014). Nasal place assimilation and the perceptibility of place contrasts. Open Linguistics, 1(1).

Luo, M. (2015). Perception and Production of Mandarin Nasal Codas by Shanghainese Speakers. (p. 16).

- Mielke, J., Carignan, C., & Thomas, E. R. (2017). The articulatory dynamics of pre-velar and pre-nasal/æ/-raising in English: An ultrasound study. JASA, 142(1), 332–349.
- Mou, X. (2006). Nasal codas in standard chinese: A study in the framework of the distinctive feature theory. (Doctoral dissertation, Massachusetts Institute of Technology).

References II

- Spreafico, L., Pucher, M., & Matosova, A. (2018). Ultrafit: A speaker-friendly headset for ultrasound recordings in speech science.
- Wu, M., Sloos, M., & van de Weijer, J. (2016). The perception of the english alveolar-velar nasal coda contrast by monolingual versus bilingual chinese speakers. In 2016 10th international symposium on chinese spoken language processing (iscslp) (pp. 1–5). IEEE.
- Yu, A. C. (2011). Mergers and neutralization. The Blackwell companion to phonology, 1-27.
- Zee, E. (1981). Effect of vowel quality on perception of post-vocalic nasal consonants in noise. JPhon, 1(9), 35-48.

Appendix: Stimuli

Vowel	/n/		/ŋ/	
Context	Chinese Char Pinyin	English	Chinese Char Pinyin	English
	山林 shānlín	'mountain forest'	山陵 shānlíng	'lofty mountains'
/i/	全民 quánmín	'all the people'	全名 quánmíng	'full name'
	押金 yānjīn	'deposit'	压惊 yājīng	'help sb. get over a shock'
	风琴 fēngqín	'organ (instrument)'	风情 fēngqíng	'amorous feelings'
/a/	青山 qīngshān	'green hills'	轻伤 qīngshāng	'minor wound'
	出产 chūchǎn	'yield'	出厂 chūchǎng	'(of products) dispatch from the factory'
	隐含 yǐnhán	'imply'	引航 yǐnháng	'pilot a ship'
	造反 zàofǎn	'rise in rebellion'	造访 zàofǎng	'pay a visit'

Appendix: Stimuli

Vowel	/n/		/ŋ/	
Context	Chinese Char Pinyin	English	Chinese Char Pinyin	English
	人参 rénshēn	ʻginsengʻ	人声 rénshēng	'voice'
/ə/	解闷 jiěmèn	'amuse'	解梦 jiěmèng	'dream reading'
	清真 qīngzhēn	'Islamic'	清蒸 qīngzhēng	'steamed'
	水深 shuǐshēn	'depth (of waterway)'	水声 shuǐshēng	'water sounds'
	机关 jīguān	'mechanism'	激光 jīguāng	'laser'
/ua/	_ 经传 _ jīngzhuàn	'classics'	精壮 jīngzhuàng	'strong'
	高官 gāoguān	'manager'	高光 gāoguāng	'highlight'
	旁观 pángguān	'look on'	膀胱 pángguāng	'bladder'

Appendix: individual LD values in /əN/ context

Appendix: individual LD values in /iN/ context

