Variation and change in Kom fricativized vowels

Matthew Faytak

ACAL 46 — May 30, 2014
Background: Kom
Background: Kom
Background: Kom

Demographic information

- Spoken by 233,000 people, including a large diaspora within Cameroon

- Ethnologue development level 3 - used by speakers of other languages

Orthography in place, taught in primary schools (?) Chia and Kimbi (1984)
Fricativized vowels or fricative vowels are known from a handful of languages around the world

- Several languages of the Grassfields area
 - Connell (2007)
 - Fransen (1995)

- Northern and southwestern China
 - Dell (1981)
 - Feng (2009)

- Swedish
 - Schötz et al. (2011)
 - Björsten and Engstrand (1999)

They involve the deliberate formation of a central constriction that produces a fricative noise source
Fricative vowels in Kom

Kom has two fricativized vowels, both of which are high(ish), central, and fully voiced:

- (Post)alveolar frication, here /z/
- Lip-compressed (after bilabial /b/) or labiodental (elsewhere) frication, here /v/
- The high vowels are sometimes realized with a voiceless “coda” of frication, e.g. [iç], [ux], but they contrast with /z/, /v/:

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>bv</td>
<td>bz</td>
<td>i</td>
<td>bi</td>
</tr>
<tr>
<td>‘ash’</td>
<td>‘goat’</td>
<td>‘kola nut’</td>
<td>—</td>
<td>‘dog’</td>
</tr>
<tr>
<td>i</td>
<td>dv</td>
<td>dz</td>
<td>ndi</td>
<td>ndu</td>
</tr>
<tr>
<td>‘plenty’</td>
<td>‘to weep’</td>
<td>‘to insult’</td>
<td>‘to leave’</td>
<td>—</td>
</tr>
<tr>
<td>i</td>
<td>kv</td>
<td>—</td>
<td>a</td>
<td>j</td>
</tr>
<tr>
<td>‘rope’</td>
<td>—</td>
<td>‘mirror’</td>
<td>‘to take’</td>
<td>‘mortar’</td>
</tr>
</tbody>
</table>

Note that I use **Chao tone letters** throughout

Chao (1930)
Fricative vowels in Kom

ME, ‘road’

EJ, ‘road’

ME, ‘plenty’

EJ, ‘plenty’
Fricative vowels in Kom

ME, ‘rain’

EJ, ‘rain’
Side note: fricative vowels and fricatives

In running speech

\[u\-\ dy\-\ m\ojn\-\ ‘it’s plenty, it’s enough’ \]
Why fricative vowels?

On the one hand, a descriptive void

- Researchers know how to describe fricatives (spectral moments, peak frequencies)
- Researchers know how to describe vowels (formants, formant trajectories)
- Today, we will deal with a sound that may best be described with aspects of both
Why fricative vowels?

However, these are more generally interesting to Africanists, too:

- May be more common than readily acknowledged in a stretch of the northern Grassfields
- Good candidates for proto-Bantu “degree 1” vowels (see Merrill and Faytak, tomorrow, this conference)
- Behavior over time has interesting ramifications for typologies of sound change
Overview

Qualitative description:

- Between- and within-speaker variation in vowel choice, /v/ ∼ /z/
- Assimilations of vowel to consonant place and vice-versa
- Associated production of bilabial trills, [ɓ]

Quantitative description:

- HF energy: fricative vowels > regular vowels
- HF energy over the duration of the segment: more dynamicity for fricative vowels
Methods
28 first-language speakers of Kom were recruited in Cameroon (18 M, 10 F, ages 18–63)

- 21 speakers of Kom were recruited in and around the city of Bamenda, Cameroon
- An additional 7 were recruited in the town of Belo, north of Bamenda and in Kom country
Speaker recruitment

Speakers recruited by way of snowball recruitment

Goodman (1961)
Speaker recruitment

Subset examined today: 4M, 2F
Speaker recruitment

Subset examined today: 4M, 2F

<table>
<thead>
<tr>
<th>Name</th>
<th>Gender</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>EJ</td>
<td>F</td>
<td>30</td>
</tr>
<tr>
<td>KG</td>
<td>F</td>
<td>18</td>
</tr>
<tr>
<td>ME</td>
<td>M</td>
<td>63</td>
</tr>
<tr>
<td>VN</td>
<td>M</td>
<td>53</td>
</tr>
<tr>
<td>AN</td>
<td>M</td>
<td>41</td>
</tr>
<tr>
<td>NV</td>
<td>M</td>
<td>26</td>
</tr>
</tbody>
</table>
A set list of lexemes of (C)V shape was elicited

<table>
<thead>
<tr>
<th>No lip activity</th>
<th>Lip activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>bz 'goat, birth, thigh'</td>
<td>bv 'goat, birth, thigh, ashes'</td>
</tr>
<tr>
<td>dz 'termite, to cry, road'</td>
<td>dv 'to be many'</td>
</tr>
<tr>
<td>z 'to enter'</td>
<td>gv 'fowl'</td>
</tr>
<tr>
<td>Ci 'kola nut, thigh'</td>
<td>v 'foot, rain, hundred, sky'</td>
</tr>
<tr>
<td>Ce 'compound, coal, '</td>
<td>Cu 'hand, to leave'</td>
</tr>
<tr>
<td>Co 'bag, two, house'</td>
<td></td>
</tr>
</tbody>
</table>

Some lexemes vary in vowel from person to person (more later!)
Recording was carried out on a Marantz PMD 661 solid-state recorder (22 kHz sampling rate) using an AudioTechnica omnidirectional lapel microphone

- Each category above was elicited at least five times
- Effort made to record indoors and minimize echo
- Token counts are not usually equal, due to environmental variation and certain common words appearing repeatedly
- Lowest token counts are generally for /e/ and /u/
Qualitative
Vowel choice and trilling

Within and between speaker: /v/ ~ /z/ in stems with labial initials /b m f/

<table>
<thead>
<tr>
<th>Gloss</th>
<th>Kom</th>
<th>Oku</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘birth’</td>
<td>bəழ ~ bəɣ</td>
<td>bi</td>
</tr>
<tr>
<td>‘goat’</td>
<td>bəʔ ~ bəʔ</td>
<td>bəʔɛj</td>
</tr>
<tr>
<td>‘thigh’</td>
<td>aʔbəʔ ~ aʔbəʔ</td>
<td>kəbịj</td>
</tr>
<tr>
<td>‘avocado’</td>
<td>bəʔɛ ~ bəʔɛ</td>
<td>bia</td>
</tr>
<tr>
<td>‘nosebleed’</td>
<td>bəʔɛɾ ~ bəʔɛɾ</td>
<td>—</td>
</tr>
<tr>
<td>‘to swallow’</td>
<td>məʔ ~ məʔ</td>
<td>mi</td>
</tr>
<tr>
<td>‘to take’</td>
<td>fəʔ ~ fəʔ</td>
<td>—</td>
</tr>
<tr>
<td>‘DIST.DEM.CL19’</td>
<td>fəʔ-ɾəʔ ~ fəʔ-ɾəʔ</td>
<td>—</td>
</tr>
</tbody>
</table>

Oku data from Davis (1992)
Vowel choice and trilling

Exceptions: two words in which *u → γ

<table>
<thead>
<tr>
<th>Gloss</th>
<th>Kom</th>
<th>Oku</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘anthill’</td>
<td>mbv̥k⁻¹ ~ mbv̥k⁻¹</td>
<td>mbv̥k</td>
</tr>
<tr>
<td>‘ashes’</td>
<td>a⁻ vá l, *a⁻ b̥z⁻ l</td>
<td>—</td>
</tr>
</tbody>
</table>

- Otherwise, the comparative data suggest *i → z (→ γ)
- Much more difficult to imagine how *i directly to γ would work
If the initial is /b/, speakers sporadically produce a pre-stopped bilabial trill ([bβ] and [bβz] both attested)

\[\text{əbv} \sim \text{əbb} \text{ ‘thighs’} \]

The trilling may have “seeded” the /v/ \sim /z/ variation, or may be a symptom of the coarticulatory tendencies that make both possible
Quantitative
Fricatives have characteristic high-frequency energy; measuring spectral intensity above a cutoff point should capture a distinction between fricativized and non-fricativized vowels.

Similar metric has been used to distinguish among types of fricatives (Utman and Blumstein, 1994).

After segmenting vowel tokens using Praat TextGrids, a custom Python script was used to:

- **Downsample** all audio to 16 kHz sampling rate and measure intensity (dB) at 60 points in each spectrum.
- **Mel-transform** the audio’s spectra to more accurately weigh the contributions of lower frequencies.
- **Normalize** intensity to a minimum of 0 dB (lowest point $\rightarrow 0$; no negative dB values).
H/T energy metric

Once the spectra are normalized and transformed:

- **H** (high-frequency energy) is calculated by summing the intensity of the 25 highest-frequency points in the spectrum (3–8 kHz)
- **T** (total energy) is calculated by summing the intensity of all 60 points in the spectrum (300 Hz – 8 kHz)
- Sampling of spectra starts at 300 Hz to remove voicing from spectrum
- **H/T** is calculated; will always be a number between 0 and 1 (share of total intensity contributed by the portion of the spectrum above 3 kHz)
H/T energy metric, visualized

Each vowel token: H, T, and H/T at 15 evenly spaced times
H/T energy ratio at fifth sampling point, Kom

Across all tokens of:

- CZ = \{b,d\} + /z/
- CV = \{b,d,g\} + /v/
- ZZ = /z/, no onset
- VV = /v/, no onset
- IY = C or \emptyset + /i/
- UW = C or \emptyset + /u/
- EY = C or \emptyset + /e/
- OW = C or \emptyset + /o/

Vowels with lip activity (VV, UW, etc) are broken out from those without it (ZZ, IY, etc) because of known spectral differences between the two groups: a lower H should result for lip activity, all else held equal.
A look at dynamicity
A look at dynamicity: SSANOVA

To get a better sense of dynamicity: Smoothing Spline ANOVA (SSANOVA)

- A spline is generated to best fit collections of sampled points (‘knots’), here the H/T values for each of many vowel tokens at 15 time points
- A smoothing term makes the spline less wavy
- 95% Bayesian confidence intervals are given around each spline
- If the confidence intervals overlap at some point along the spline, the difference between the curves is not significant

Davidson (2006)
Nycz and De Decker (2006)
As a nice bonus, we can overlay multiple splines
SSANOVA by subject and ±lab

Speaker ME, -lab

Speaker ME, +lab

H/T energy

0 2 4 6 8 10 12 14

0.25
0.30
0.35
0.40
0.45
0.50
0.55

CZ
ZZ
IY
EY
CV
VV
UW
OW
SSANOVA by subject and ±lab

Speaker AN, -lab

- CZ
- ZZ
- IY
- EY

Speaker AN, +lab

- CV
- VV
- UW
- OW
SSANOVA by subject and ±lab

Speaker VN, -lab

Speaker VN, +lab

H/T energy

CZ
ZZ
IY
EY
CV
VV
UW
OW
SSANOVA by subject and ±lab

Speaker KG, -lab

Speaker KG, +lab
SSANOV by subject and ± lab

Speaker NV, -lab

Speaker NV, +lab

H/T energy

0 2 4 6 8 10 12 14

0.25
0.30
0.35
0.40
0.45
0.50
0.55

CZ
ZZ
IY
EY

CV
VV
UW
OW
SSANOVA by subject and ±lab

Speaker EJ, -lab

0 2 4 6 8 10 12 14

H/T energy

0.25 0.30 0.35 0.40 0.45 0.50 0.55

Speaker EJ, +lab

0 2 4 6 8 10 12 14

H/T energy

0.25 0.30 0.35 0.40 0.45 0.50 0.55

CZ ZZ IY EY

CV VV UW OW
Speakers vary in peak H/T and trajectory of H/T
Speakers vary in peak H/T and trajectory of H/T.
Summary

For fricativized vowels:

▶ Speakers vary in size of peak H/T, which can be interpreted as relative intensity of frication
▶ Speakers do not vary much in timing of peak H/T
▶ Speakers vary in trajectory of H/T over the vowel, which can be interpreted as relative ‘level-ness’ of frication intensity
▶ In particular, some speakers exhibit a more rapid fall in H/T to a lower endpoint; these more dynamic speakers tend to be younger

Most of these characteristics do not apply to the high vowels /i/, /u/
Conclusions

- Fricativized vowels in Kom have more HF energy and more internal dynamicity than other high vowels.
- Younger speakers appear to have a tendency to “release” fricativized vowels into a (relatively) frictionless portion.
- Vowels appear to be able to pass through a fricativized stage, as in Oku: all speakers have the frictionless portion for /v/.

<table>
<thead>
<tr>
<th></th>
<th>Bum</th>
<th>Kom</th>
<th>Oku</th>
</tr>
</thead>
<tbody>
<tr>
<td>*-ŋu ‘fowl’</td>
<td>-ŋu</td>
<td>-ŋgv(ə)</td>
<td>-ŋɛngɛn</td>
</tr>
<tr>
<td>*-kul ‘to chew’</td>
<td>kut</td>
<td>kv(ə)l</td>
<td>kfəl</td>
</tr>
<tr>
<td>*-ju ‘to breathe’</td>
<td>ju</td>
<td>ʒv(ə)</td>
<td>ɛɛ</td>
</tr>
<tr>
<td>*-su ‘fish’</td>
<td>—</td>
<td>-ʃv(ə)</td>
<td>-ɛɛs</td>
</tr>
</tbody>
</table>
Significance

- Relevant to Bantuists due to their potential as analogues to developments of the Proto-Bantu first-degree high vowels

- Various proposals on the “consonantal,” “noisy”, or “fortis” nature of these sounds

 Zoll (1995)
 Maddieson (2003)

- if the latter were fricativized, then “splitting” into fricative-vowel sequences and vowel “place” changes provide some additional explanatory power for the diverse sound changes comprising Bantu Spirantization
Thanks to Susan Lin, Keith Johnson, Ron Sprouse, and the Berkeley Phonology Lab Larry Hyman and Jeff Good for support, logistical and otherwise and especially Pius Tamanji † for his assistance and sponsorship in the field

References

Side note: fricative vowels and fricatives

Distinctions between fricativized vowels and voiced fricatives are less clear, but appear to mainly involve the presence of strong low-frequency formant structure (to be examined in future research)

- Fricative consonants have less formant structure
- Fricative vowels generally have some, often plainly visible

ə[chv]ˌ ndoˌ yaˌzaˌz̩ˌ ‘the door is ajar’