### Articulatory, but not acoustic, target uniformity in Suzhou Chinese Matthew Faytak faytak@ucla.edu — LSA 2020 Annual Meeting

## Target uniformity [2, 5]

Phonological content is biased toward similar phonetic implementation across segments

- e.g., feature bundle for  $[\pm anterior]$  sibilant frication tends to be uniformly implemented, for same value of  $[\pm$ anterior]
- » Spectral center of gravity (CoG) correlated, reflects front cavity length

Unclear which is constrained: acoustic targets or the articulations used to fulfill them

## Suzhou Chinese 苏州话

Rich in sibilant sounds, including **fricative** vowels  $/i_{z}/$ ,  $/y_{z}/$  and apical vowels /j/, [y]

- Fully, modally **voiced**; light frication appropriate to place [7, 9]
- The vowel series can be thought of as differing in value of  $[\pm$ anterior]
- Vowels contrast for **rounding**, in parallel with high front vowels /i/, /y/

|              | [+anterior]         | [_anterior]         |
|--------------|---------------------|---------------------|
| Affricate    | ts, ts <sup>h</sup> | tç, tç <sup>h</sup> |
| Fricative    | S                   | ą                   |
| Vowel, [–rd] | 1                   | i <sub>z</sub>      |
| Vowel, [+rd] | Ч                   | Уz                  |

Phonotactic restrictions:

- Apical/[+ant] vowels always follow [+ant] fricatives
- Fricative/[—ant] vowels follow [—ant] fricatives, but also and a wider variety of onsets

Known **uniformity in articulation** within  $[\pm anterior]$  sets

- Mutually predictable, fricative-like tongue shapes used in each  $[\pm ant]$  series [3, 7]
- Constriction for [—ant] vowels is made nonuniformly by a minority of speakers

### **Present study**

Goal: Assess relationships among fricative consonants' and fricative/apical vowels' CoG Hypothesis: Because lingual articulatory uniformity holds, consistent additive effects of voicing, rounding should lower CoG, but correlations in CoG should hold

# Materials, method

**Participants:** 22 speakers (17 F) Stimuli: CV monosyllables containing both fricative consonants and vowels



Other /s/, /ɕ/: 箫 ɕiæ<sup>44</sup> 'flute', 沙 su<sup>44</sup> 'sand', etc.

Spectral center of gravity (CoG) calculated from middle third of target segments, stopband filtered below 3 kHz

#### **Does uniformity in lingual articulation lead** to uniformity in frication acoustics (CoG)?

 Vowels occurring after fricatives and nonfricative onsets **pooled** in analysis (un-pooled in supplement)

| [+ant]                     |                    | [-ant]                          |                                 |  |
|----------------------------|--------------------|---------------------------------|---------------------------------|--|
| [_rd]                      | [+rd]              | [-rd]                           | [+rd]                           |  |
| <u>לא</u> 51 <sup>44</sup> | 书 sy <sup>44</sup> | 稀 çi <sub>z</sub> <sup>44</sup> | 虚 çy <sub>z</sub> <sup>44</sup> |  |
| 'thread'                   | 'book'             | 'rare'                          | 'weak'                          |  |
|                            |                    |                                 |                                 |  |
|                            |                    |                                 |                                 |  |
|                            |                    | 衣 i <sub>z</sub> 44             | 优 y <sub>z</sub> <sup>44</sup>  |  |
|                            |                    | 'garment'                       | 'excellent'                     |  |
|                            |                    |                                 |                                 |  |
|                            |                    |                                 |                                 |  |

• Wider frequency band than normal [4, 8] • Fricative vowels have *much* more harmonic energy than voiced fricatives; present in clear formants up to F4





- For [-round] vowels, CoG consistently lowered by voicing relative to fricative
- Correlations reach significance

- For ⊢round] CoG lowered further by rounding by unpredictable amount, particularly for [+ant] vowel
- Correlations fail to reach significance

Rounded vowels: correlations with matching  $[\pm ant]$  fricative, do not reach significance

#### Unrounded vowels: positively and significantly correlated with matching $[\pm ant]$

fricative



### Discussion

Uniform phonetic implementation in acoustics, but only to a point

- Unrounded fricative vowels' CoGs correlate with those of appropriate fricatives; does not apply to the rounded fricative vowels
- **Unexpected**, since Sūzhōu Chinese speakers generally use fricative-like **uniform tongue shapes** within  $[\pm ant]$  sets [3]

Working interpretation: speakers are predisposed toward uniform activity of single articulators, but this does not necessarily translate into uniformity in acoustics

- Articulatory implementation of tongue shape is constrained; produces uniform acoustics here and in [1]
- Acoustic outcome of uniform tongue shapes with added lip activity (and voicing) is not constrained
- Suggests gradual weakening of uniformity constraint as more co-occurring features are added

#### Next steps

- Retry with more robust measure of fricative noise source's front cavity resonance, i.e. [6]
- Relate quantitatively to indices of tongue shape illustrated in [3]

#### Acknowledgements

Thanks to Pat Keating and Eleanor Chodroff for useful discussion; and Chen Zhongmin 陈忠敏 and Wang Feifan 王非凡 for logistical help. Data collection supported by ASA Stetson Scholarship in Phonetics and Speech Science.

#### **PDF** with references, supplement

Includes analyses on unfiltered data; data un-pooled by onset type; spectrograms



# vowels,

weak

#### References

- [1] Chodroff, E. (2017). Structured Variation in Obstruent Production and Perception. PhD thesis, Johns Hopkins University.
- [2] Chodroff, E. and Wilson, C. (2017). Structure in talker-specific phonetic realization: Covariation of stop consonant VOT in American English. Jour*nal of Phonetics*, 61:30–47.
- [3] Faytak, M. (2019). Uniform phonetic implementation and the Suzhou Chinese fricative vowels. Under revision.
- [4] Jongman, A., Wayland, R., and Wong, S. (2000). Acoustic characteristics of English fricatives. The Journal of the Acoustical Society of America, 108(3):1252-1263.
- [5] Keating, P. (2003). Phonetic and other influences on voicing contrasts. In Proceedings of *ICPhS* 15, pages 375–378.
- [6] Koenig, L. L., Shadle, C. H., Preston, J. L., and Mooshammer, C. R. (2013). Toward improved spectral measures of /s/: Results from adolescents. Journal of Speech, Language, and Hearing *Research*, 56(4):1175–1189.
- [7] Ling, F. (2009). A phonetic study of the vowel system in Suzhou Chinese. PhD thesis, City University of Hong Kong.
- [8] Silbert, N. and de Jong, K. (2008). Focus, prosodic context, and phonological feature specification: Patterns of variation in fricative production. The Journal of the Acoustical Society of *America*, 123(5):2769–2779.
- [9] Wang, P. (2011). 苏州方言研究 [Research on the *Sūzhōu dialect*]. 中华书局 [Zhonghua Book Company].

### Spectrogram examples

**Note:** fricative vowel symbols differ from rest of poster.  $[\underline{i}] = [i_{z}], [\underline{u}]$ 



$$] = [y_z]$$

#### 怨 [y]523 "blame"



Time (s)









### What if $/i_{z}/$ , $/y_{z}/$ are not pooled across onset types?

As one might expect: vowels that immediately follow fricative onsets correlate slightly more with them



### What if the data aren't filtered?

CoG of whole spectrum yields different results

- /s/ does not correlate with any apical vowels
- vowels





• /ɕ/ does not correlate with unrounded vowels; correlates with rounded

• Fricative and apical vowels more extensively correlate with themselves • Filtering to a lower frequency (2 kHz) yields intermediate results